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Abstract— DNA fragment assembly problem (FAP) is concerned with building the DNA sequence from several hundred (or even, thousands) of DNA 
fragments taken at random. Metaheuristic techniques are being used with very accurate results even for large problems. All existing methods rely on 
heuristics, since the DNA fragment assembly problem is NP-hard. Bat algorithms are used here to solve the DNA fragment assembly problem more 
efficiently. 
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——————————      —————————— 
1 INTRODUCTION 
DNA Fragment Assembly (DFA) is a system of trying to 
find the best order and orientation of a set of DNA 
fragments that can help finding the original DNA. With 
current technology like, gel electrophoresis, we are unable 
to accurately sequence DNA molecules that are more than 
1000 bases long. In reality however, DNA contains much 
longer sequences. A human DNA for example, contains 
about 3.2 Billion nucleotides and we cannot read it all at 
once. To solve the problem, few techniques are developed. 
DNA molecules are first cut into smaller fragments at 
random locations and get sequenced directly. The 
overlapping fragments are then assembled back into the 
original DNA molecule. It is very important to perform this 
phase perfectly because later phases of any project with 
DNA depend on the accuracy of this part. DNA fragment 
assembly is a process that helps doing exactly this, 
assembling the fragmented DNA back to longer sequence. 
Most of sequence assembly algorithms are based on some 
variation of a greedy algorithm where the fragments are 
assembled by repeatedly merging the pair of fragments 
with the highest overlap (similarity score) according to a 
specific and complex criterion. Greedy methods obtain 
good results for small to medium sequences but fail to deal 
with large genome sequencing projects. Meta-heuristic 
techniques are being used with very accurate results even 
for large problems. All existing methods rely on heuristics, 
since the fragment assembly problem is NP-hard. The most 
popular techniques are evolutionary algorithms, ant colony 
systems, and simulated annealing.  
 

 

 

 

 

Though these algorithms achieve good result in case of 
sequencing DNA fragments, however, expected accuracy is 
yet to receive. In this regard, for achieving more accuracy, 
we have applied a new meta-heuristic algorithm (BAT 
Algorithm) in DNA fragment assembly problem. 
 

2 RELATED WORK 
2.1 Genetic Algorithm 

In 1995, Rebecca Parsons Stephanie Forrest and Christian 
Burks worked with various genetic algorithm operators 
that can help with the permutation problem associated with 
the Human Genome Project in order to assemble the DNA 
sequence fragments [1]. 

In [2], a GA using a permutation representation is studied 
to solve this problem with different recombination 
operators. Edge Recombination (ER) and Order crossover 
(OX) are used along with some permutation operators, such 
as Cycle crossover (CX) and Partial Mapped crossover 
(PMX). They also analyze different seeding strategies to 
generate the initial population which is an important issue 
in building successful GAs. To do so, they incorporate 
solutions generated by a 2- opt heuristic and a greedy 
approach to the initial population in order to improve the 
final accuracy and efficiency of the algorithm. 

From the study and analysis of all these components of the 
genetic algorithm they observe that the 2-opt heuristic to 
generate the population is very beneficial since it allows 
improving the fitness quality without increasing the 
execution time. From the recombination operator point of 
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view, the edge recombination achieves the best results, 
although it results in a longer execution time for random 
and 2-opt seeding strategies. On the other hand, cycle and 
order crossover operators are the best options when the 
greedy strategy is used.  

FAP can be efficiently solved using meta-heuristics with 
success but still has problems in presence of noise in the 
data while being input or while being searched and more 
so in large instances. Gabriela Minetti et al. [3] propose a 
parallel and hybrid meta-heuristics PH-PALS, combining 
Problem Aware Local Search (PALS) technique with 
Simulated Annealing (SA) for solving noisy instances of 
FAP. The hybrid approach they proposed resulted better 
performance in both cases of very large non-noisy as well 
as noisy cases compared to Simulated Annealing or PALS. 

In [4], four heuristic algorithms are designed, implemented, 
tested and then compared. In genetic algorithms, three 
operators: selection, crossover, and mutation are applied to 
a population of individuals to create a new population. 
They use ranking selection mechanism, in which the GA 
first sorts the individuals based on their fitness values and 
then selects the individuals with the best fitness score until 
the specified population size is reached. Two crossover 
operators: order-based and edge-recombination are 
implemented to allow partial solutions to evolve in 
different individuals and then combine them to produce a 
better solution.  

They use the swap mutation operator for modification of 
single individual, which randomly selects two positions 
from a permutation and then swaps them.  

The first step of the algorithm helps building the Best Set of 
Maximum Weight Contigs (BSC) having the complexity of 
O(n2 l2). Here n is the Fragments count and l is the 
fragments length averaged. The next step of the algorithm 
is for sorting the Maximum Weight Contigs (MWC) of BSC 
considering the contig overlaps order with complexity 
O(m2 l2). In this case, m is the number of MWCs.  

This process calculates the contig overlaps instead of 
fragment overlaps In order to get the both of these 
advantages. One is, considering just true overlaps and 
making sure of finding the orientation of the fragments.  

The third heuristic they applied is Structured Pattern 
Matching Algorithm, which is based on a technique called 
hybridization Fingerprinting. Here, the task is divided into 
three phases. In first phase, they randomly select short 
probes from each fragment, and then use exact pattern 
matching in determining the relative positions of the input 
fragments. Thus, each fragment is represented as an 
ordered set of probes and associated inter-probe distances 
rather than a sequence of nucleotides. A detailed map is 
constructed in second phase to show how fragments are 
ordered and how they align. The third phase is used to 
determine the sequence. The time complexity of the 
Structured Pattern Matching algorithm is approximately 
linear in the length of the target sequence.  

The fourth method they applied is Clustering Heuristic 
Algorithm with traditional three steps: overlap, layout, and 
consensus. They use the semi-global alignment algorithm to 
find all possible pairwise overlaps. After determining the 
overlaps, they use a greedy heuristic in the layout phase to 
find the multiple sequence alignment among a set of 
fragments. The pair of fragments with highest overlap are 
taken as the starting point. The layout is constructed by 
successively adding the fragment that has the highest 
overlap with the assembled fragments, until no fragment is 
left.  

After analyzing the result, they conclude that for smaller 
data sets, all four algorithms got the same result in 
approximately the same running time. However, the results 
and the performance vary as the data sets become larger. 
For larger data sets, i.e., 50 or more fragments, the 
performance of the algorithms ranking from best to worst 
is: Structured Pattern Matching Algorithm, Clustering 
Heuristic Algorithm, Genetic Algorithm, and finally the 
Greedy Algorithm. 

2.2. Swarm intelligence 

The paper [5] used swarm intelligence to solve this problem 
which is based on the study of behavior of simple 
individuals (e.g. ant colonies, bird flocking, and honey bees, 
animal herding) that mimics the behavior of swarms of 
social insects or animals. 

In [6], Stochastic Diffusion Search (SDS) algorithm is used. 
This algorithm also belongs to the category of swarm 
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intelligence and is based on mimicking the foraging 
behavior of one type of ants Leptothorax acervorum.  

In 2003, Meksangsouy and Chaiyaratana proposed ant 
colony optimization. The goal of the search was to find the 
right order and orientation of each fragment to create a 
consensus sequence [7]. 

There are a few proposed solutions different than these in 
2011 to solve the DNA sequence assembly problem using 
Particle Swarm Optimization (PSO) using Shortest Position 
Value (SPV) rule. [8]. In 2012 Firoz analyzed and discussed 
the performance of two swarm intelligence based 
algorithms namely Artificial Bee Colony (ABC), and Queen 
Bee Evolution Based on Genetic Algorithm (QEGA) to solve 
the fragment assembly problem [9]. In 2013 Fernandez-
Anaya et al. designed a nature inspired algorithm 
(PPSO+DE) based on Particle Swarm Optimization and 
Differential Evolution [10]. 

3 PRELIMINARIES 
In this section, we present some background and 
preliminaries. Most of the definitions and procedures 
presented in this section follow from [11]. 

The input of the DNA fragment assembly problem is a set 
of fragments that are randomly cut from a DNA sequence. 

To further understand the problem, we need to know the 
following basic terminology: 

1. Fragment: A short sequence of DNA with length 
up to 1000 bps. 

2. Shotgun data: A set of fragments. 
3. Prefix: A substring comprising the first characters 

of a fragment. 
4. Suffix: A substring comprising the last characters 

of a fragment. 
5. Overlap: Common sequence between the suffix of 

one fragment and the prefix of another fragment. 
6. Layout: An alignment of a collection of fragments 

based on the overlap order, i.e., the fragment order 
in which the fragments must to be joined. 

7. Contig: A layout consisting of contiguous 
overlapping fragments, i.e., a sequence in which 
the overlap between adjacent fragments is greater 
than a predefined threshold. 

8. Consensus: A sequence or string derived from the 
layout by taking the majority vote for each column 
of the layout.  

To measure the quality of a consensus, we can look at the 
distribution of the coverage. Coverage at a base position is 
defined as the number of fragments at that position. It is a 
measure of the redundancy of the fragment data. It denotes 
the number of fragments, on average, in which a given 
nucleotide in the target DNA is expected to appear and is 
computed as follows [12]: 

 

 

4 PROPOSED ALGORITHM AND 
EXPERIMENTAL RESULT 
DNA Fragment Assembly is an NP-hard problem. Many 
algorithms have already been used to find accurate DNA 
sequence from a collection of fragments. However, 
satisfactory result has not been achieved yet. Still now, it is 
one of the crucial challenges faced by computational 
biologists. In recent years it has been noticed that nature 
provides hints to solve many critical problems. Many 
difficult problems have been solved by using nature 
inspired algorithms. The vast majority of heuristic and 
meta-heuristic algorithms have been derived from the 
behavior of biological systems and/or physical systems in 
nature. For example, particle swarm optimization was 
developed based on the swarm behavior of birds and fish 
[13, 14], while simulated annealing was based on the 
annealing process of metals [15]. New algorithms are also 
emerging recently, including harmony search and the 
firefly algorithm [16]. The former was inspired by the 
improvising process of composing a piece of music [17], 
while the latter was formulated based on the flashing 
behavior of fireflies. Bat algorithm [18] is another nature 
inspired algorithm which was introduced in 2010. It 
provides a new meta-heuristic method, based on the 
echolocation behavior of bats. We use this algorithm to 
solve DNA Fragment Assembly problem. We analyze the 
performance of bat algorithm to solve the fragment 
assembly problem and compare it with existing results. 
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4.1 Bat Algorithm 

1. All bats use echolocation to sense distance, and 
they also know the difference between food/prey 
and background barriers in some magical way; 

2. Bats fly with no defined sequence having velocity 
vi at position xi having a fixed frequency fmin, that 
changes in wavelength and amplitude A0 to look 
for the target. They can change the wavelength (or 
frequency) at will in their produced pulses and 
tune the rate of pulse emission r 2[0, 1], depending 
on distance of their prey; 

3. Even though, the sound amplitude can be 
modulated in varieties of ways, we assume that 
this amplitude changes from a high (positive) A0 to 
a minimum constant value Amin. 

 
Algorithm 1 

Bat Algorithm 
 

Pseudo code of the bat algorithm (BA). 
 
Objective function f(x), x = (x1,…….,xd)T 
Initialize the bat population xi (i = 1, 2,…..,n) and vi 
Define pulse frequency fi at xi 
Initialize pulse rates ri and the loudness Ai 
while (t < Max number of iterations) do 

Generate new solutions by adjusting frequency, 
and updating velocities and locations/solutions 
if (rand > ri) then 
 Select a solution among the best solutions 
 Generate a local solution around the selected best      
solution 
end if 
Generate a new solution by flying randomly 
if (rand < Ai & f(xi) < f(x*)) then 
Accept the new solutions 
Increase ri and reduce Ai 
end if 
Rank the bats and find the current best x 

end while 
Post process results and visualization 
 
4.2 Proposed algorithms 

We implement the algorithm inspired from Bat algorithm 
to solve the DNA fragment assembly problem with some 
changes which is similar to Genetic algorithm. To generate 
the local solution from the best solution we used crossover 

and mutation. To generate a new solution we use random 
order of thing of the fragments.  

For fitness calculation we used a fitness function that sums 
the overlap score for adjacent fragments (f[i] and f[i + 1]) in 
a given solution. Let us denote the overlap score by W(f[i], 
f[i + 1]) and fitness function by F. So, 

  

where n is the no. of fragments in the solution. 

4.3. Experimental setup 

In this section, we present the results obtained by executing 
Bat Algorithm for solving DNA Fragment Assembly 
Problem (FAP). We have used the DNA sequences 
available at NCBI [19, 21]. We give a summary on the 
different features of the datasets in Table I. To generate the 
fragments from the DNA sequences, we have used the 
DNAgen instances [22] tool. We use these datasets in the 
above mentioned algorithms implemented using c++. The 
environment was simulated in Mac OSX 10.11 running on 
an Intel core i5 Processor with 8GB RAM. 

4.3.1 Algorithm Implementation 

We implemented this algorithm from scratch using C++. 
For data representation we use STL library. We use all 
unique random number in a range to generate an 
individual. We have used ordered crossover and swap 
mutation in our algorithms. Swap mutation randomly picks 
two points and swap their positions. This operation run 
several time based on a random number generated each 
time the operation is called. Ordered crossover and swap 
mutation with probability for genetic algorithm. 

4.3.2 Result 

Table 2 presents the results obtained for solving the FAP. 
We have executed 10000 iterations of BA for each instance. 
We present the best fitness obtained in each case. At Table 3 
in conjunction with Figure 1, we can see that the fitness 
value improves significantly with the increment of no. of 
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iterations. This suggests that, to get higher accuracy, we 
need to increase the number of iterations of if time permits. 

Table 1 
Information of Dataset 

 Instances  Coverage Mean 
fragment 
length  

Number 
of 
fragments 

Original 
sequence 
length 

acin1 26 182 307 2170 

acin2 3 1002 451 147200 

acin3 3 1001 601 200741 

acin5 2 1003 751 329958 

acin1 2 1003 901 426840 

acin9 7 1003 1049 156305 

 

Table 2 
Best Fitness Obtained 

Instances Best Fitness Obtained 

acin1 19698 

acin2 90766 

acin3 135920 

acin5 8969 

acin7 321819 

acin9 249965 

 

Table 3 
Fitness Obtained for Acin1 By BA 

No of Iterations Fitness Obtained 

10000 19698 

20000 23624 

30000 25578 

40000 26740 

50000 27361 

 

 

 

 

Fig 1: Relation between number of iterations and fitness for 
acin1 by BA. 

 

5 CONCLUSION 
We have solved the DNA Fragment Assembly Problem 
using Bat Algorithm. The implementation isn't finely tuned 
yet. Exploration and exploitation function needs more 
improvement. Tweaking operation can also be improved. 
In this work, only noiseless Data is used to solve the FAP 
problem. There are still opportunities to work a lot more 
with this solution. 

Table 4 
Overall results comparing BA algorithm with other 

algorithms. 
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