
International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 731
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Bat Algorithm for Solving DNA Fragment
Assembly Problem

Taher Muhammad Mahdee, Md. Habibur Rahman,Md. Mamunur Rashid

Abstract— DNA fragment assembly problem (FAP) is concerned with building the DNA sequence from several hundred (or even, thousands) of DNA
fragments taken at random. Metaheuristic techniques are being used with very accurate results even for large problems. All existing methods rely on
heuristics, since the DNA fragment assembly problem is NP-hard. Bat algorithms are used here to solve the DNA fragment assembly problem more
efficiently.

Keywords— Bioinformatics, DNA fragment assembly, Metaheuristic, Bat algorithms, Genetic algorithms, Combinatorial optimization, Data mining

—————————— ——————————
1 INTRODUCTION
DNA Fragment Assembly (DFA) is a system of trying to
find the best order and orientation of a set of DNA
fragments that can help finding the original DNA. With
current technology like, gel electrophoresis, we are unable
to accurately sequence DNA molecules that are more than
1000 bases long. In reality however, DNA contains much
longer sequences. A human DNA for example, contains
about 3.2 Billion nucleotides and we cannot read it all at
once. To solve the problem, few techniques are developed.
DNA molecules are first cut into smaller fragments at
random locations and get sequenced directly. The
overlapping fragments are then assembled back into the
original DNA molecule. It is very important to perform this
phase perfectly because later phases of any project with
DNA depend on the accuracy of this part. DNA fragment
assembly is a process that helps doing exactly this,
assembling the fragmented DNA back to longer sequence.
Most of sequence assembly algorithms are based on some
variation of a greedy algorithm where the fragments are
assembled by repeatedly merging the pair of fragments
with the highest overlap (similarity score) according to a
specific and complex criterion. Greedy methods obtain
good results for small to medium sequences but fail to deal
with large genome sequencing projects. Meta-heuristic
techniques are being used with very accurate results even
for large problems. All existing methods rely on heuristics,
since the fragment assembly problem is NP-hard. The most
popular techniques are evolutionary algorithms, ant colony
systems, and simulated annealing.

Though these algorithms achieve good result in case of
sequencing DNA fragments, however, expected accuracy is
yet to receive. In this regard, for achieving more accuracy,
we have applied a new meta-heuristic algorithm (BAT
Algorithm) in DNA fragment assembly problem.

2 RELATED WORK
2.1 Genetic Algorithm

In 1995, Rebecca Parsons Stephanie Forrest and Christian
Burks worked with various genetic algorithm operators
that can help with the permutation problem associated with
the Human Genome Project in order to assemble the DNA
sequence fragments [1].

In [2], a GA using a permutation representation is studied
to solve this problem with different recombination
operators. Edge Recombination (ER) and Order crossover
(OX) are used along with some permutation operators, such
as Cycle crossover (CX) and Partial Mapped crossover
(PMX). They also analyze different seeding strategies to
generate the initial population which is an important issue
in building successful GAs. To do so, they incorporate
solutions generated by a 2- opt heuristic and a greedy
approach to the initial population in order to improve the
final accuracy and efficiency of the algorithm.

From the study and analysis of all these components of the
genetic algorithm they observe that the 2-opt heuristic to
generate the population is very beneficial since it allows
improving the fitness quality without increasing the
execution time. From the recombination operator point of

• Taher Muhammad Mahdee is currently teaching in
Bangladesh Army University of Science and Technology as
Lecturer. His email address is t.mahdee@gmail.com .

• Md. Habibur Rahman is pursuing his M.Sc. in CSE from
Bangladesh University of Engineering and Technology. His
email address is talha629@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 732
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

view, the edge recombination achieves the best results,
although it results in a longer execution time for random
and 2-opt seeding strategies. On the other hand, cycle and
order crossover operators are the best options when the
greedy strategy is used.

FAP can be efficiently solved using meta-heuristics with
success but still has problems in presence of noise in the
data while being input or while being searched and more
so in large instances. Gabriela Minetti et al. [3] propose a
parallel and hybrid meta-heuristics PH-PALS, combining
Problem Aware Local Search (PALS) technique with
Simulated Annealing (SA) for solving noisy instances of
FAP. The hybrid approach they proposed resulted better
performance in both cases of very large non-noisy as well
as noisy cases compared to Simulated Annealing or PALS.

In [4], four heuristic algorithms are designed, implemented,
tested and then compared. In genetic algorithms, three
operators: selection, crossover, and mutation are applied to
a population of individuals to create a new population.
They use ranking selection mechanism, in which the GA
first sorts the individuals based on their fitness values and
then selects the individuals with the best fitness score until
the specified population size is reached. Two crossover
operators: order-based and edge-recombination are
implemented to allow partial solutions to evolve in
different individuals and then combine them to produce a
better solution.

They use the swap mutation operator for modification of
single individual, which randomly selects two positions
from a permutation and then swaps them.

The first step of the algorithm helps building the Best Set of
Maximum Weight Contigs (BSC) having the complexity of
O(n2 l2). Here n is the Fragments count and l is the
fragments length averaged. The next step of the algorithm
is for sorting the Maximum Weight Contigs (MWC) of BSC
considering the contig overlaps order with complexity
O(m2 l2). In this case, m is the number of MWCs.

This process calculates the contig overlaps instead of
fragment overlaps In order to get the both of these
advantages. One is, considering just true overlaps and
making sure of finding the orientation of the fragments.

The third heuristic they applied is Structured Pattern
Matching Algorithm, which is based on a technique called
hybridization Fingerprinting. Here, the task is divided into
three phases. In first phase, they randomly select short
probes from each fragment, and then use exact pattern
matching in determining the relative positions of the input
fragments. Thus, each fragment is represented as an
ordered set of probes and associated inter-probe distances
rather than a sequence of nucleotides. A detailed map is
constructed in second phase to show how fragments are
ordered and how they align. The third phase is used to
determine the sequence. The time complexity of the
Structured Pattern Matching algorithm is approximately
linear in the length of the target sequence.

The fourth method they applied is Clustering Heuristic
Algorithm with traditional three steps: overlap, layout, and
consensus. They use the semi-global alignment algorithm to
find all possible pairwise overlaps. After determining the
overlaps, they use a greedy heuristic in the layout phase to
find the multiple sequence alignment among a set of
fragments. The pair of fragments with highest overlap are
taken as the starting point. The layout is constructed by
successively adding the fragment that has the highest
overlap with the assembled fragments, until no fragment is
left.

After analyzing the result, they conclude that for smaller
data sets, all four algorithms got the same result in
approximately the same running time. However, the results
and the performance vary as the data sets become larger.
For larger data sets, i.e., 50 or more fragments, the
performance of the algorithms ranking from best to worst
is: Structured Pattern Matching Algorithm, Clustering
Heuristic Algorithm, Genetic Algorithm, and finally the
Greedy Algorithm.

2.2. Swarm intelligence

The paper [5] used swarm intelligence to solve this problem
which is based on the study of behavior of simple
individuals (e.g. ant colonies, bird flocking, and honey bees,
animal herding) that mimics the behavior of swarms of
social insects or animals.

In [6], Stochastic Diffusion Search (SDS) algorithm is used.
This algorithm also belongs to the category of swarm

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 733
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

intelligence and is based on mimicking the foraging
behavior of one type of ants Leptothorax acervorum.

In 2003, Meksangsouy and Chaiyaratana proposed ant
colony optimization. The goal of the search was to find the
right order and orientation of each fragment to create a
consensus sequence [7].

There are a few proposed solutions different than these in
2011 to solve the DNA sequence assembly problem using
Particle Swarm Optimization (PSO) using Shortest Position
Value (SPV) rule. [8]. In 2012 Firoz analyzed and discussed
the performance of two swarm intelligence based
algorithms namely Artificial Bee Colony (ABC), and Queen
Bee Evolution Based on Genetic Algorithm (QEGA) to solve
the fragment assembly problem [9]. In 2013 Fernandez-
Anaya et al. designed a nature inspired algorithm
(PPSO+DE) based on Particle Swarm Optimization and
Differential Evolution [10].

3 PRELIMINARIES
In this section, we present some background and
preliminaries. Most of the definitions and procedures
presented in this section follow from [11].

The input of the DNA fragment assembly problem is a set
of fragments that are randomly cut from a DNA sequence.

To further understand the problem, we need to know the
following basic terminology:

1. Fragment: A short sequence of DNA with length
up to 1000 bps.

2. Shotgun data: A set of fragments.
3. Prefix: A substring comprising the first characters

of a fragment.
4. Suffix: A substring comprising the last characters

of a fragment.
5. Overlap: Common sequence between the suffix of

one fragment and the prefix of another fragment.
6. Layout: An alignment of a collection of fragments

based on the overlap order, i.e., the fragment order
in which the fragments must to be joined.

7. Contig: A layout consisting of contiguous
overlapping fragments, i.e., a sequence in which
the overlap between adjacent fragments is greater
than a predefined threshold.

8. Consensus: A sequence or string derived from the
layout by taking the majority vote for each column
of the layout.

To measure the quality of a consensus, we can look at the
distribution of the coverage. Coverage at a base position is
defined as the number of fragments at that position. It is a
measure of the redundancy of the fragment data. It denotes
the number of fragments, on average, in which a given
nucleotide in the target DNA is expected to appear and is
computed as follows [12]:

4 PROPOSED ALGORITHM AND
EXPERIMENTAL RESULT
DNA Fragment Assembly is an NP-hard problem. Many
algorithms have already been used to find accurate DNA
sequence from a collection of fragments. However,
satisfactory result has not been achieved yet. Still now, it is
one of the crucial challenges faced by computational
biologists. In recent years it has been noticed that nature
provides hints to solve many critical problems. Many
difficult problems have been solved by using nature
inspired algorithms. The vast majority of heuristic and
meta-heuristic algorithms have been derived from the
behavior of biological systems and/or physical systems in
nature. For example, particle swarm optimization was
developed based on the swarm behavior of birds and fish
[13, 14], while simulated annealing was based on the
annealing process of metals [15]. New algorithms are also
emerging recently, including harmony search and the
firefly algorithm [16]. The former was inspired by the
improvising process of composing a piece of music [17],
while the latter was formulated based on the flashing
behavior of fireflies. Bat algorithm [18] is another nature
inspired algorithm which was introduced in 2010. It
provides a new meta-heuristic method, based on the
echolocation behavior of bats. We use this algorithm to
solve DNA Fragment Assembly problem. We analyze the
performance of bat algorithm to solve the fragment
assembly problem and compare it with existing results.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 734
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

4.1 Bat Algorithm

1. All bats use echolocation to sense distance, and
they also know the difference between food/prey
and background barriers in some magical way;

2. Bats fly with no defined sequence having velocity
vi at position xi having a fixed frequency fmin, that
changes in wavelength and amplitude A0 to look
for the target. They can change the wavelength (or
frequency) at will in their produced pulses and
tune the rate of pulse emission r 2[0, 1], depending
on distance of their prey;

3. Even though, the sound amplitude can be
modulated in varieties of ways, we assume that
this amplitude changes from a high (positive) A0 to
a minimum constant value Amin.

Algorithm 1

Bat Algorithm

Pseudo code of the bat algorithm (BA).

Objective function f(x), x = (x1,…….,xd)T
Initialize the bat population xi (i = 1, 2,…..,n) and vi
Define pulse frequency fi at xi
Initialize pulse rates ri and the loudness Ai
while (t < Max number of iterations) do

Generate new solutions by adjusting frequency,
and updating velocities and locations/solutions
if (rand > ri) then
 Select a solution among the best solutions
 Generate a local solution around the selected best
solution
end if
Generate a new solution by flying randomly
if (rand < Ai & f(xi) < f(x*)) then
Accept the new solutions
Increase ri and reduce Ai
end if
Rank the bats and find the current best x

end while
Post process results and visualization

4.2 Proposed algorithms

We implement the algorithm inspired from Bat algorithm
to solve the DNA fragment assembly problem with some
changes which is similar to Genetic algorithm. To generate
the local solution from the best solution we used crossover

and mutation. To generate a new solution we use random
order of thing of the fragments.

For fitness calculation we used a fitness function that sums
the overlap score for adjacent fragments (f[i] and f[i + 1]) in
a given solution. Let us denote the overlap score by W(f[i],
f[i + 1]) and fitness function by F. So,

where n is the no. of fragments in the solution.

4.3. Experimental setup

In this section, we present the results obtained by executing
Bat Algorithm for solving DNA Fragment Assembly
Problem (FAP). We have used the DNA sequences
available at NCBI [19, 21]. We give a summary on the
different features of the datasets in Table I. To generate the
fragments from the DNA sequences, we have used the
DNAgen instances [22] tool. We use these datasets in the
above mentioned algorithms implemented using c++. The
environment was simulated in Mac OSX 10.11 running on
an Intel core i5 Processor with 8GB RAM.

4.3.1 Algorithm Implementation

We implemented this algorithm from scratch using C++.
For data representation we use STL library. We use all
unique random number in a range to generate an
individual. We have used ordered crossover and swap
mutation in our algorithms. Swap mutation randomly picks
two points and swap their positions. This operation run
several time based on a random number generated each
time the operation is called. Ordered crossover and swap
mutation with probability for genetic algorithm.

4.3.2 Result

Table 2 presents the results obtained for solving the FAP.
We have executed 10000 iterations of BA for each instance.
We present the best fitness obtained in each case. At Table 3
in conjunction with Figure 1, we can see that the fitness
value improves significantly with the increment of no. of

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 735
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

iterations. This suggests that, to get higher accuracy, we
need to increase the number of iterations of if time permits.

Table 1
Information of Dataset

 Instances Coverage Mean
fragment
length

Number
of
fragments

Original
sequence
length

acin1 26 182 307 2170

acin2 3 1002 451 147200

acin3 3 1001 601 200741

acin5 2 1003 751 329958

acin1 2 1003 901 426840

acin9 7 1003 1049 156305

Table 2
Best Fitness Obtained

Instances Best Fitness Obtained

acin1 19698

acin2 90766

acin3 135920

acin5 8969

acin7 321819

acin9 249965

Table 3
Fitness Obtained for Acin1 By BA

No of Iterations Fitness Obtained

10000 19698

20000 23624

30000 25578

40000 26740

50000 27361

Fig 1: Relation between number of iterations and fitness for
acin1 by BA.

5 CONCLUSION
We have solved the DNA Fragment Assembly Problem
using Bat Algorithm. The implementation isn't finely tuned
yet. Exploration and exploitation function needs more
improvement. Tweaking operation can also be improved.
In this work, only noiseless Data is used to solve the FAP
problem. There are still opportunities to work a lot more
with this solution.

Table 4
Overall results comparing BA algorithm with other

algorithms.

Ite
m

Be

nc
hm

ar
k

LK
H

 [1
4]

PP
SO

 [1
3]

Q
EG

A
[2

]

SA
 [2

]

PA
LS

 [1
5]

SA
X

[1
5]

FF

BA

ac
in

1

47
61

8

47
26

4

47
11

5

46
95

5

46
87

6

46
86

5

45
16

0

19
69

8

ac
in

2

15
15

53

14
74

29

14
41

33

14
47

05

14
46

34

14
45

67

14
74

60

90
76

6

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 736
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

ac
in

3

16
78

77

16
39

65

15
61

38

15
66

30

15
67

76

15
57

89

16
46

52

13
59

20

ac
in

5

16
39

06

16
15

11

14
45

41

14
66

07

14
65

91

14
58

80

16
29

15

89
69

ac
in

7

18
09

66

18
00

52

15
53

22

15
79

84

15
80

04

15
70

32

17
99

13

32
18

19

ac
in

9

34
41

07

33
55

22

32
27

68

32
45

59

32
59

30

31
43

54

33
38

15

24
99

65

6 REFERENCES
[1] Rebecca J. Parsons et al., “Genetic algorithms,

Operators, and DNA Fragment Assembly",
October 1995, Volume 21, Issue 1, pp 11-33.

[2] Gabriela Minetti et al., “Seeding strategies and
recombination operators for solving the DNA
fragment assembly problem", April 2008.

[3] Gabriela Minetti et al., “An improved trajectory-
based hybrid meta-heuristic applied to the noisy
DNA Fragment Assembly Problem", February
2014.

[4] Lishan Li and Sami Khuri, “A Comparison of
DNA Fragment Assembly Algorithms"

[5] Blum,C., Li,X., “Swarm intelligence in
optimization", Springer(2008).

[6] Al-Rifaie, M.M., Bishop, M., “Stochastic diffusion
search review", Journal of Behavioral Robotics, vol.
4(3), 2013.

[7] Meksangsouy, P., Chaiyaratana, N., “DNA
fragment assembly using an ant colony system
algorithm", Evolutionary Computation, 2003.
CEC03. The 2003 Congress on. vol. 3, pp.17561763.
IEEE (2003).

[8] Verma,R.S.,Singh,V.,Kumar,S., “DNA sequence
assembly using particle swarm optimization",
International Journal of Computer Applications 28
(2011).

[9] Firoz, J.S., Rahman, M.S., Saha, T.K., "Bee
algorithms for solving DNA fragment assembly
problem with noisy and noiseless data",
Proceedings of the fourteenth international
conference on Genetic and evolutionary
computation conference. pp. 201208. ACM (2012).

[10] Mallen-Fullerton, G.M., Fernandez-Anaya, G.,
“DNA fragment assembly using optimization. In:
Evolutionary Computation (CEC)", 2013 IEEE
Congress on. pp. 15701577. IEEE (2013).

[11] Yang, X.S., “Fire Fly algorithms for multimodal
optimization", Proc. 5th Int. Conf. on Stochastic
Algorithms: Foundations and Applications
SAGA'09, Springer, Berlin, Heidelberg, 2009,
169178.

[12] J. Setubal and J. Meidanis, Fragment assembly of
dna, Introduction to Computational Molecular
Biology, pp. 105139, 1997.

[13] Kennedy, J. and Eberhart, R.: Particle swarm
optimization, Proc. IEEE Int. Conf. Neural
Networks. Perth, Australia, 1942-1945 (1995).

[14] Kennedy, J. and Eberhart, R., Swarm Intelligence.
Academic Press, (2001).

[15] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P.:
Optimization by simulated annealing. Science, 220,
671-680 (1983).

[16] Geem, Z.W., Kim, J. H., Loganathan, G. V.: A new
heuristic optimization algorithm: Harmony search.
Simulation, 76, 60-68 (2001).

[17] Yang, X.-S.: Nature-inspired Meta-heuristic
Algorithms. Luniver Press, (2008).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February-2018 737
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

[18] Yang, X. S., “Bat algorithm: literature review and
applications." International Journal of Bio-Inspired
Computation, 5(3), 141-149 2013.

[19] http://www.ncbi.nlm.nih.gov/
nuccore/178817?report=fasta(M15421.1), [Online;
accessed 20-November-2011].

[20] http://www.ncbi.nlm.nih.gov/
nuccore/34645?report=fasta(X60189.1, [Online;
accessed 20-November-2011].

[21] http://www.ncbi.nlm.nih.gov/nuccore/215104?
report=fasta(J02459.1. [Online; accessed 20-
November-2011].

[22] M. L. Engle and C. Burks, Artificially generated
data sets for testing dna sequence assembly
algorithms, Genomics, vol. 16, no. 1, pp. 2868,1993.

 IJSER

http://www.ijser.org/

